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Synopsis 

The rate of contraction of drawn nylon 66 in aqueous phenol wfts investigated, and a 
method is described for correlating this cont,raction with a series of elementary rate 
processes. The rate constants so obtained were analyzed by absolute rate theory, and 
the variations of A H $  and A S S  with phenol concentration gave evidence of the nature 
of the reaction steps. 

INTRODUCTION 

Nylon 66 fibers are dimensionally unstable in the presence of either heat 
or certain chemical agents (those capable of disrupting the nylon’s inter- 
molecular bonding). In  undrawn and slightly drawn fibers the tendency is 
to a length increase (along the fiber axis), while highly drawn filaments 
contract. 

In  our experiments the rate of longitudinal contraction of a drawn yarn 
has been used as a probe for following the kinetics of the interaction of 
nylon 66 with aqueous phenol. This interaction has previously been stud- 
ied by several authors, l V 3  and the contraction (both thermal and chemical) 
has been ascribed to breakage of interchain hydrogen bonds, 1 , 2 , 4  followed 
by conversion of the polymer chains from the extended to the folded confor- 
mation4 and formation of new, stronger  bond^.^,^,^ 

The intention of this work is to calculate the rate constants and activation 
energies of these elementary processes and to relate them to fiber structure. 

EXPERIMENTAL 

Samples 

The samples used in these experiments were from an experimental nylon 
66 yarn prepared by Chemstrand Research Center, Inc. The draw ratio 
was 4, and the yarn had 17 filaments with a total denier of 50 and a 0.5 
twist per inch. The samples contained 0.025 f 0.015y0 Ti02 and no other 
additives. 
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Apparatus 
The apparatus consisted of a 500 ml, graduated cylinder surrounded 

by a glass jacket, through which water, held a t  constant temperature 
(*O.O5"C), was circulated. The yarn ( =40 cm long) was looped through 
a wire ring (=50 mg in weight), which made immersion possible; other- 
wise the fiber would float until completely soaked by the solution. The 
yarn ends were held by a small clamp, which was suspended above the ap- 
paratus. 

The shrinkage of the fiber was measured in solution by means of the 
graduations on the cylinder. The length a t  any given time could be deter- 
mined to within 1 part in 350 while the fiber contracted. Phenol concen- 
tration and temperature were varied, and a t  least five determinations were 
made for each set of conditions. Reproducibility was approximately 3% 
(coefficient of variation) of the average length change a t  a given time. 

Reagents 
Crystalline phenol (Baker reagent-grade, containing 0.15% HSP02 as 

preservative) was dissolved in distilled water to form solutions of 1, 2, 3, 
and 4% phenol by weight. Since no correction was made for the water 
content of the phenol (perhaps as high as lo%), these concentrations are 
only approximate, though their relative values are accurate. 

KINETIC ANALYSIS 
As noted in the introduction, i t  has been proposed by several authors 

that the longitudinal contraction (both thermally and chemically induced) 
of drawn nylon consists of the following steps: (1) bond breaking, (2)  
motion of polymer segments, and (3) bond re-formation (the effects of 
diffusion will be considered separately). 

If the folding of polymer chains is fast compared to the other steps (this 
is reasonable, considering that bond formation, usually an extremely rapid 
process, is hindered by the presence of bound phenol), the mechanism may 
be pictured as follows: 

ki fast kz 
A---+B'----+B---+C 

where A is extended chains with hydrogen bonds intact, B' is segments 
where these bonds have been broken, B is contracted segments, and C is 
contracted segments whose hydrogen bonds have re-formed. Representing 
the above sequence as 

ki ki 

A-B-C 

would not alter the kinetic analysis. 
Dismore and Statton* have proposed that shrinkage is equal to the frac- 

tion of molecules converted from the extended to the folded conformation. 
This relation may be expressed as follows: 

lOO[([C] - [C]o)/[Alo] = X = ( l o  - Q / l o  X 100 (1) 
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where S is the percent shrinkage, lo the initial length, and 1 the length a t  
time t. If both steps in the preceding kinetic scheme are first-order 
(evidence of this will be given later), i t  can be showne that 

[Cl - [CIO = f [Aln/(kz - kd  ] [kz(l - exp( - kd}) 

- kl(1 - expf - k2tl)I (2) 

Combining eqs. (1) and (2) gives 

St = [100/(kz - k1)1 [kz(l - expf - kit}) - kl(1 - expf - kz t } ) ]  (3) 

At large times eq. (3) reduces to S, = 100~o ,  which is true only if there 
is complete dissolution of the fiber. Dismore and Statton14 however, sug- 
gested that only the weakest bonds break under a given set of experimental 
conditions. Thus, [A10 in eq. (2) would be replaced by [A’lo, which repre- 
sents the number of segments whose hydrogen bonds are “breakable.” 
Therefore, 

St = 100 ([A’lo/[Aln) [kz(l - exp{ - k d ) )  - kl(1 - 

expf - k2t))I/(kZ - kl) (4) 

(5)  

Now the final shrinkage X, can be expressed as 

S, = lim*, St = 100 ([A’lo/[A10) 

Therefore, 

s~/s ,  = relative contraction = [kz(l - expi - kit}) 
- kl(1 - exp{ - kd])I/(lcz - kd (6) 

Since bond formation is nearly always faster than bond breaking, it can be 
assumed that kz > kl. Equation (6) then simplifies to 

St/S, = [kz(l - expi -kit)) - klI/(k2 - kl) (7) 

(8) 

(9) 

or 

kl = -ln[(kz - kl)/kzl (1 - St/S,)l/t 

kl = -In (1 - St/S,)/t 

If kz >> kl (not always true), then 

Equation (9) permits the calculation of an approximate kl for each measure- 
ment of St. However, solving eq. (7) for lcz gives 

kz = kl(1 - St/S,)/[(I - St/S,) - expf -k1t)I (10) 
Inspection of eq. (9), however, reveals that the denominator of eq. (10) 
represents the difference of two nearly equal quantities, making it impos- 
sible to determine kz accurately. This difficulty can be resolved by making 
a further assumption about the nature of the shrinkage process: when the 
rate of shrinkage is large, then the concentration of contracted segments B 
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must be large, but as B reacts to form C (i.e., re-formation of hydrogen 
bonds) the rate of shrinkage should decrease. This suggests the following 
expression: 

[B] a dS/dt (11) 

The factor that directly affects the length change, though, is, not the con- 
centration of B, but, the fraction of segments in stat,e B (i.e., [B]/[AIo). 
Therefore, 

[B]/[A]o = - (l/Zo) (dlldt) = (1/100) (dS/dt) (12) 

d[C]/dt = kz[B] (13) 

However, the rate of formation of C is 

Combining eqs. (12) and (13) and integrating gives 

IOO([Cl - [Clo)/[Alo = kzS (14) 

This equation is nearly identical with eq. (l) ,  the only difference being the 
rate constant k2. Substituting eq. (14) into eq. (2) gives 

St = [100/k~ (kz - k1)l [kz(l - exp{ - k d ) )  - kl(1 - exp{ - k d ) ) ]  (15) 

and, therefore, 

s, = 100/k2 (16) 

This removes the necessity of assuming that some bonds can break and 
others cannot, since S,  does not reduce to 100%. 

As a result, the expressions for the relative contraction [eqs. (6), (7), (S), 
and (9)] are unchanged, but the final shrinkage is only dependent on the 
rate of bond re-formation. Thus, equilibrium measurements (S,) will 
give a reasonably accurate value of k2, and kl can be approximated from 
eq. (9) ; substitution of kz and this approximate k~ into eq. (8) should give 
an accurate value of kl. 

It was found that the kl's increased with time, until a nearly constant 
value was obtained, and then decreased as equilibrium was approached. 
An average (neglecting the kl's a t  both extremes of the time scale) was 
taken, and curves of St versus time were calculated from eq. (7). Compar- 
ison of these curves with experimental results showed good fit a t  all but the 
first few points. 

The agreement between the calculated and experimental results improved 
with increasing temperature, however, suggesting that the discrepancy is 
related to diffusion of the reagent into the fiber. This diffusion effect can 
be accounted for by assuming that the rate of diffusion is constant (on a 
macroscopic scale) along any fiber radius : 

t Er jR ,  0 < r < R (17) 
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where R = fiber radius and r = distance penetrated by diffusion species. 
But t = tD a t  T = R, where tD = time for diffusing to the fiber's center. 
Therefore, 

t = tD (r/R) and 1' = R(t/tD) (18) 

Because of diffusion the effective concentration of A is proportional to 
the area penetrated a t  time t (if t < tD): 

[A],fr = K'm(2R - T )  = K(t / tD)  (2 - t/tD) (19) 

where K = K'?rR2 = [A]; K = [A J only if the rate of reaction of A is much 
slower than diffusion. Thus, the actual rate in the interval 0 to tD is 
kl [AIPff and not kl [A]. Therefore, 

rate = h[A]err = keff /A] (20) 

where kerf is t,he rate constant calculated from eq. (8). 
(19) gives 

Rearranging eq. 

[AIer t /K = [Alert/[Al = ( t / t ~ )  (2 - V~D) 

keff = kl (t/tD) (2 - t/tD) 

(21) 

(22) 

Combining eqs. (20) and (21) gives 

By substituting values of keff  into eq. (22) a value of tD can be calculated 
for each t < tD. An average value of tD can then be substituted into eq. 
(22) and a theoretical keff found for each t. By using these keffls the St)s 
corrected for diffusion can be calculated from eq. (7). 

For example, in 3y0 phenol at 35°C the kerf's calculated were 0.0083, 
0.0234, and 0.0296 for 10, 20, and 30 see, respectively. When substituted 
into eq. (22) they yield 80, 39.6, and 38.1 as values of tD. By choosing 
tD = 39 and calculating new kerfls from eq. (22) it can be seen, in Table I, 
that the agreement with the observed St)s is greatly improved. 

TABLE I 

St (mlcd., St (corrd. for 
1, sec St (obsd.) for k, = 0.0309) kerf (theor.) diffusion) 

10 1 .o  3 . 3  0.014 1 . 6  
20 4 . 7  5 . 8  0.024 4 . 8  
30 7 . 4  7 . 6  0.029 7 . 3  

Figure 1 shows a set of curves calculated from eq. (7) with the correction 
for diffusion. 

The preceding analysis shows that the shrinkage rate of nylon filaments 
may be approximately fitted to a two-parameter equation, in which the 
parameters may be represented as rate constants for two consecutive 
reactions (additional steps with rate constants much larger than kl and kz 
will not affect the kinetics). It has also been shown that if the number of 
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2 % PHENOL, DRAWN NYLON 66 
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Fig. 1. Shrinkage as a function of time for drawn nylon 66 filaments in 2% aqueous 

Lines are calculated from eq. (7) ; points represent experimental phenol solution. 
measurements. 

chain folds is proportional to shrinkage, k2 must be a first-order rate con- 
stant. In addition, 
the introduction of a parameter (b), which can be related to diffusion rate, 
greatly improves the correlation between experimental and calculated be- 
havior. 

The choice of kl as first-order was purely empirical. 

RESULTS 
Shrinkage measurements as a function of time were made with nylon 66 

filaments in water and 1, 2, 3, and 4% aqueous phenol solutions at  several 
temperatures. The data were analyzed as outlined in the preceding sec- 
tion, and the results are shown in Table 11. 

PHENOL GONG. 

-3 t 

Fig. 2. Temperature dependences of kl according to eq. (24). 
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TABLE I1 
Rate Constants 

Phenol 
concn., yo Temp., "C kl,  sec-1 kl, sec-* IP, SPC 

4 15 
25 
35 

3 13 
20 
25 
35 
45 
55 

2 20 
35 
45 
55 

1 25 
35 
45 
55 

0 25 
35 
45 
55 

17.2 
17.2 
17.1 
12.4 
12.6 
12.4 
12.6 
12.2 
12.1 
8.8 
8 . 7  
9 . 0  
8 .7  
5 .5  
5.8 
6 . 4  
6 . 5  
3 . 5  
4 .3  
4 . 3  
4.8 

0.0130 
0.0267 
0.0589 
0.00554 
0.00345 
0.0154 
0.0309 
0.0703 
0.14 
0.00474 
0.0216 
0.067 
0.12 
0.00434 
0.0131 
0.0506 
0.115 
0.00404 
0.0136 
0.05 
0.13 

5.81 
5.81 
5.85 
8.06 
7.94 
8.06 
7.94 
8.20 
8.26 

11.36 
11.49 
11.11 
11.49 
18.18 
17.39 
15.63 
15.38 
28.57 
23.26 
23.26 
20 83 

160 
80 
32 

456 
19 L 
130 
33 
11.;  
0 

173 
3 '3 

0 
9s 
31) 
11.5 
0 

1 4 )  
43 
11 
0 

5 -J 

According to transition state theory,? a rate constant (k )  can be expressed 
as: 

k = (kBT/h) exp{ -AH$/RT) exp{AS$/R) (23) 
where k g  is Boltzmann's constant, h is Planck's constant, T is the 2 >so:ule 
temperature, R is the gas constant, AH$ is the enthalpy of activation, and 
AS$ is the entropy of activation. This equation can also be expressed as: 

In(k/T) = -(AH$/R) ( l / T )  + (AS$/R) + In ( k d h )  (24) 
Thus, the slope of a plot of In k / T  versus 1/T should be - AH$/R and the 
intercept I\S$/R + In kB/h. Figures 2 and 3 show such plots for lc, and 
kz, and Table I11 summarizes the results. 

TABLE I11 
Thermodynamic Behavior of Rat,e Constants& 

Phenol concn., kl k2 

% A f f f  A S S  A F f  A H f  AS: A F f  

4 12 .7zk0.8  -22.9 19.5 -0.3zkO.1 -56.8 16.6 
3 1 3 . 8 z k 0 . 3  -20.5 19.9 -0.5zkO.l  -56.0 16.2 
2 1 7 . 4 z k 0 . 7  -9.5 20.2 -0.63Z0.3 -55.7 16.0 
1 21.1 3Z2.2 1.6 20.6 -1.83Z0.5 -58.8 15.7 
0 22.2zk1.0 4.9 20.7 - 2 . 5 * 1 . 1  -60.2 15 .4  

A H $  and AFf are in kcal/mole, A S $  in cal/deg-mol; estimates of error are 95% 
confidence intervals. 
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PHENOL m. 

3.5 

Fig. 3. Temperature dependences of k, according to eq. (24). 

P 4 %  
0 3 %  
m 2 %  
0 I % 
0 %  

Fig. 4. Temperature dependences of t~ according to eq. (26). 

Further, t D  can be considered inversely proportional to the diffusion 
The diffusion coefficient can be expressed as? coefficient D. 

D = Do exp { -ED/RT) 

t~ = (K/Dd exp (EDIRT]  

(25)  

(26) 

where ED is the activation energy for diffusion. If t D  = 1/D, then 

where K is a proportionality constant whose value is unknown. A plot 
of In t D  versus 1/T should be a straight line with a slope of ED/R, provided 
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that K/Do is approximately temperature-dependent. This is confirmed in 
Figure 4. Since there is no apparent concentration dependence, the t D 1 s  

were considered concentration-independent. 
The slope of the line in Figure 4 results in an apparent activation energy 

of 20.5 f 2.5 kcal/mol for ED, which is not unreasonable for diffusion into a 
hydrogen-bonded system. 

DISCUSSION 

The reaction of nylon with phenol has been reported by Cannong to 
consist of attack by the phenolic proton on a nylon carbonyl oxygen, leading 
to  dissociation of an intermolecular hydrogen bond. Similarly, Dismore 
and Statton4 have theorized that intermolecular bond-breaking is the rate- 
controlling step for thermal shrinkage of nylon. 

If kl is actually the rate constant for bond-breaking, positive values of 
ASS would be expected. This is observed in water and 1% phenol, but 
the increasingly negative values of ASS a t  larger concentrations imply 
increasing participation of phenol in the activated state. This is in agrer- 
ment with measurements of phenol uptake in nylon yarns,6 which show :L 
linear increase in uptake with the concentration of phenol in solution. 

The fact that the values of kl for water and 1% phenol are nearly equal 
suggests that these solutions break the same percentage of hydrogen bonds, 
even though the latter produces a slightly larger contraction. This 
phenomenon has also been observed by Forward and Palmer15 who reported 
that the irreversible portion of the length change of drawn nylon is un- 
altered up to a concentration of 1% phenol. 

If enough intermolecular bonds are broken, the polymer chains would be 
free to assume a more random configuration, resulting in a decrease in 
length along the fiber axis. Such a step would appear to  be much faster 
than the other reactions considered, and it could thus be eliminated from the 
kinetic analysis. 

The large negative values for the activation entropy of kz indicate that 
the final reaction step is indeed preceded by a random conformation, while 
the small activation energies are evidence that this step represents bond 
formation. 

The negative values for AHS are not unreasonable, considering that ther- 
mal shrinkage of nylon increases with t empera t~ re .~ .~  This implies that 
Icz [see eq. (IS)]  for thermal contraction has a negative temperature coeffi- 
cient. 

Since AH% is nearly equal to the Arrhenius activation energy, (AH# = 
E,,, - RT), the supposition of a negative value for this quantity may seem 
meaningless. However, according to Glasstone et al.,’ it is “the free energy 
of activation, and not necessarily the heat of activation, which determines 
the rate of a chemical reaction.” Thus, the behavior of & suggests that the 
activated state for the final step is slightly favored energetically (possibly 
owing to partial bond formation) and that the free-energy barrier to 
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reaction is almost entirely entropic. The energy of activation often seems 
to be the controlling factor in a reaction only because entropy changes are 
usually small. The reaction under consideration, though, may be com- 
pared to vapor condensation, where the heat of activation is nearly zero 
but the rate of condensation is slow owing to a large decrease in entropy.’ 

it has been shown that the rate of contraction of a drawn 
nylon yarn in aqueous phenol can be analyzed on the basis of a consecutive 
reaction scheme with two first-order steps (and appropriate corrections for 
diffusion). Evidence has been presented that indicates the nature of these 
steps and that yields information about the yarn structure. 

In conclusion: 
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